Dialogværktøj

CIRCULARITY

i den eksisterende bygningsmasse
Partnere

VIA University College, Center for Byggeri, Energi, Vand og Klima:
Damir Hatic
Malene Elmbæk
Maria Gaardsted Kamper
Mette Falbe-Hansen
Torsten Sack-Nielsen

SBI, Statens Byggeforskningsinstitut:
Harpa Birgisdóttir
Kai Kanafani
Regitze Kjær Zimmermann
Camilla Ernst Andersen

I Circularity City projektet samles de virksomheder og kommuner i Region Midtjylland, der vil gå forrest og vise, hvordan vi kan bygge cirkulære byer. Der kan læses mere om Circularity City ved at besøge www.circularitycity.dk.

Bag Circularity City står følgende konsortier af partnere med ekspertise inden for cirkulær økonomi, byggeri og byudvikling:

Alle billeder, grafik, skitser og alt udarbejdet projektmateriale er udarbejdet af projektgruppen, hvis ikke andet er nævnt.
Forord

Dialogværktøjet til cirkulær renovering er udviklet i samarbejde mellem VIA University College og SBi, under projektet Circularity City. Projektet er støttet af Regional Vækstforum i Region Midtjylland.

Værktøjet er udarbejdet som en hjælp og inspiration til byggebranchens aktører for at lette en omstillingsproces til cirkulære tankegange, når byggerier projekteres og renoveres.

Dialogværktøjet forventes at kunne bidrage til en kvalificeret dialog, og til at flere beslutninger kommer til at understøtte en cirkulær tankegang.

Udgivet 2019
Dialogværktøjet kan skærpe bygherrens og rådgiverens øje for værdier i eksisterende bygninger.

— Lars Bak
Afdelingsleder, Teknik og Miljø
Skanderborg kommune
Indhold

Intro ... 5
Cirkulær økonomi .. 8
Bygninger som materialebank ... 10
Livscyklusvurdering (LCA) ... 12

Dialogværktøjet ... 14
Trin 1: Kan bygningen bevares i sin helhed? .. 17
Trin 2: Kan bygningsdele og materialer bevares? ... 29
Trin 3: Kan ressourcerne matches? ... 33
Oversigt ... 36

Katalog over cirkulære løsninger ... 39
Eksempelbygning ... 40
Eksempler på bygningsdele ... 42
Eksempler på materialer ... 52

Inspirationsliste ... 77
Denne vejledning er udarbejdet som et værktøj til bygherrer, arkitekter, bygningskonstruktører, entreprenører, ingeniører og andre aktører, som ønsker at arbejde med cirkulær værdiskabelse i den eksisterende bygningsmasse.

Vejledningen er et dialogværktøj, som faciliterer et forløb, hvor ressourcerne i et eksisterende byggeri kortlægges fra bygningsniveau til materialeniveau. Gennem en innovativ proces findes de mest værdifulde løsninger til ressourcernes genbrug og genanvendelse.

Vejledningen beskriver processerne for planlægning og gennemførelse af forløbet, hvilket er en del af projektering fra byggeprogram til udførelse.

Dialogværktøjet indføres som trin i byggeriets gængse faser, således der skabes rum for at se på cirkulære potentialer i en eksisterende bygning.

Cirkulær økonomi

Cirkulær økonomi er et koncept, hvor ingen ressourcer går tabt. Ressourcerne bruges igen og igen, der er ingen skadelige indholdsstoffer, og produktionen er baseret på vedvarende energi.

Principperne bag cirkulær økonomi er relativt enkle, men kan være svære at omsætte i praksis, eftersom konceptet skal indtænkes på flere niveauer; fx internationalt, statsligt, på virksomhedsniveau og på et personligt niveau.

Konceptet bygger på tre præmisser:

1. At beskytte og forbedre naturkapital.
2. At optimere ressourceudnyttelse ved at cirkulere ressourcer.
3. At fostre systemeffektivitet ved at minimere de negative følgevirkninger.

Denne cirkulære tankegang er illustreret via Ellen MacArthur Foundations ”Sommerfuglemødel”. Modellen illustrerer, hvordan materialer og produkter kan reintegres i brugbare cirkler, og på den måde beholdes eller skabes nye værdier. Spild af ressourcer mindskes eller undgås helt, og det, som ville have været affald, bliver til en ny ressource.

Et typisk renoveringsprojekt berører naturligt de fleste cirkler, som er vist i modellens højre side (Technical Materials).

Inderste og første cirkel illustrerer, hvordan en bygnings levetid forlænges ved, at bygningen vedligeholdes, repareres, opgraderes og i standhæftes, hvilket sikrer bygningens fortsatte anvendelse. Den anden cirkel angiver, at anvendelsen eventuelt kan være med ændret formål. At en bygning bevares så intakt som muligt vil givetvis skabe den største værdi.

Eventuelle nedtagne, intakte og rene materialer og bygningsdele kan forberedes til genanvendelse og genbrug i andre sammenhænge, hvilket illustreres af tredje cirkel. Fjerde og sidste cirkel viser, at materialer og bygningsdele, som har udtjent deres oprindelige funktion, for eksempel kan knuses og bruges i produktion af nye materialer.

Ovenstående beskrivelse passer på mange renoveringsprojekter, og de kan derfor alle med lidt held beskrives som værende cirkulære renoveringer.

Man kan overveje, om den højest mulige værdi opnås ved at anvende en traditionel renoveringstilgang. Vil der kunne findes højere værdi i et projekt, hvis projektet havde fokus på cirkulær værdiskabelse helt fra starten?

Cirkulær økonomi lægger op til holistisk arbejde med hele værdikæder. For at udnytte ressourcerne bedst muligt er det vigtigt, at hele værdikæden indtænkes så tidligt som muligt i et projekt for at sikre, at de beslutninger, som tages, er rigtige i forhold til alle aktører.

Fokus bør altså være på cirkulær økonomi og cirkulær renovering i hele forløbet af et projekt, så der ikke bare opnås tilfældige cirkulære værdier.
Cirkulær økonomi er et industrisystem, der har til formål at være genoprettende og regenererende igennem design, ændret adfærd og nye og innovative forretningsmodeller.

Sommerfuglemodellen
(frit fortolket af GXX fra ellenmacarthurfoundation.org)
Bygninger som materialebank

Flere steder i landet nedrives tomme bygninger, andre steder opføres nye bygninger. At anvende nedbrydningsmodne bygninger som materialebank vil reducere ressourceaftrykket ved nybyggeri.

Både økonomisk og miljømæssigt er byggningsmateriale omkostningstunge, der er således et potentiale i at kortlægge materialemængder i nedrivningsmodent byggeri. Med en ressourcekortlægning udført ved hjælp af dette dialogværktøj, kortlægges ressourcerne ud fra en holistisk betragtning, hvor både selve bygningen, bygningsdelene og materialene vurderes for at finde de højeste cirkulære værdier.

For at få størst mulig værdi ud af ressourcerne i en eksisterende bygning, bør disse ressourcer først og fremmest bevares i bygningen. Det kan give større cirkulær værdi at renovere en eksisterende bygning end at rive den ned og genanvende materialerne.

En ressourcekortlægning bør således tage udgangspunkt i det niveau, der giver potentielt størst værdi; altså at bevare bygningen og at vedligeholde/reovere, frem for at rive ned og dernæst genbruge eller genanvende materialene.

Målet med dialogværktøjet er at skabe projekter, som potentielt overflødiger bortskaffelse ved at fremhæve cirkulære værdier. Med udgangspunkt i affaldshierarkiet søges i dialogværktøjet trin 1, at forbygge affald ved at ressourcerne behandles intakte og eventuelt repareres og opgraderes.

I tilfælde af at en bygning vælges klargjort til nedrivning, guider dialogværktøjet trin 2 dernæst til at forberede ressourcer til genbrug, genanvendelse og nyttiggørelse, ved at ressourcerne potentieler kortlægges og registreres. En ressourcekortlægning udføres som en kortlægning af de materialer, der er i bygningen, med fokus på senere genbrug, genanvendelse og nyttiggørelse, i nævnte rækkefølge. En øget værdiskabelse opnås ved at rette opmærksomhed mod affaldshierarkiets niveauer.

Til sidst i dialogværktøjets trin 3 søges ressourcerne matchet til andre projekter og/eller virksomheder.

Affaldshierarkiets begreber er:

- **Affaldsforebyggelse**: Tiltag der reducerer mængden af affald, eksempelvis ved at forlænge materialernes levetid.
- **Forberedelse til genbrug**: Materialer genbruges, eksempelvis gamle mursten og betonelementer, der genbruges i samme form.
- **Genanvendelse**: Materialer genanvendes til produktion af nye materialer, for eksempel kan gipsplader indgå i produktion af nye gipsplader, eller beton kan indgå i produktion af ny beton.
- **Nyttiggørelse**: Træ kan eksempelvis forbrændes og dermed nyttiggøres til energiudnyttelse, eller beton kan nyttiggøres ved knusning og anvendes til vejfyld.

Bortskaffelse: Materialer bortskaffes til destruktion eller deponi.
Bortskaffelse

Nyttiggørelse

Genanvendelse

Forberedelse til genbrug

Affaldsforebyggelse

Affaldshierarkiets begreber
(frit fortolket fra Videncenter for Cirkulær Økonomi i Byggeriet, vcob.dk)
LCA af cirkulære løsninger

I stedet for kun at se på energiforbrug til bygningsdrift betragter en livscyklusvurdering (LCA) hele bygningens livscyklus fra vugge til grav. Det inkluderer miljøpåvirkninger og ressourceforbrug relateret til materialer, som kan reduceres ved cirkulære løsninger.

LCA i denne publikation

Bygningens livscyklus (SBI 2019)
Klimabelastning
LCA-resultater angives indenfor én eller flere indikatorer for miljøpåvirkninger og ressourceforbrug.

I denne publikation har det kun været muligt at medtage klimabelastningen for at vurdere og præsentere de cirkulære løsningers miljøpotentiale. Denne simplificering er det første skridt mod at synliggøre cirkulære løsningers miljøpotentiale. I denne omgang har det ikke været muligt også at betragte andre parametre, som fx udtømning af ressourcer, som er af central betydning for vurderingen af bygninger som materialebank. Det vil være det næste vigtige skridt i udviklingen af vurdering af cirkulære løsninger i byggeriet.

Klimabelastningen måles i enheden kg CO2-ækvivalenter og beskriver den potentielle globale opvarmning forårsaget af øget koncentration af drivhugasser i atmosfæren. Hvis der lagres mere CO2, end der udledes, er resultatet for klimapåvirkning et negativt tal.

Bygningens livscyklus
Livscyklussen betragtes som et antal faser (se illustration på venstre side). Typisk medtages der materialers produktion, bygningsdelenes udskiftninger, affaldsprocesser og driftsenergi. Bygningens samlede klimabelastning er summen af livscyklusfaserne set over en betragtningsperiode på 50 år.

Cirkulære løsninger
Klimabelastningen af eksempelbygning og bygningsdele er delt op i konventionel og cirkulær byggeteknik for at anskueliggøre effekten af forskellige tilgange.

Nogle af de cirkulære løsninger er kendte afprøvede produkter, mens andre er mere eksperimenterende og inspireret af de seneste års aktiviteter på området.

Mere om LCA og definitioner
- Introduktion til LCA på bygninger. SBI, 2015
- LCA i tidlig bygningsdesign: Introduktion til metoden og eksempler på miljøprofiler. SBI, 2019
- LCAbyg.dk (gratis beregningsværktøj)
Som bidrag til den stigende interesse for konceptet *Cirkulær Økonomi* har vi udviklet et relativt simpelt dialogværktøj for at hjælpe aktørerne til at træffe "cirkulære" beslutninger i renoveringsprojekter.

Dialogværktøjet stiller deltagerne i et byggeprojekt en række spørgsmål og opridser nogle dilemmaer, som alle skal håndteres. På denne måde får deltagerne et skærpet syn på ressourcerne i eksisterende bygninger; ressourcer, som ellers kunne være tabt.

Nogle af de foreslåede aktiviteter i værktøjet vil opleves som kendte, mens andre forslag forhåbentlig vil udfordre velkendt praksis. Brugerne af værktøjet kan selv tilføje flere aktiviteter efter behov i takt med, at dialogværktøjet implementeres som en del af praksis i forbindelse med projektering af byggeprojekter.

Flere af de beskrevne aktiviteter kan opleves som nye indsatser, som umiddelbart medfører ekstra omkostninger. Vores forhåbning er, at disse nye omkostninger vil kunne dækkes ind af de hidtil skjulte værdier og ressourcer, som med traditionelle processer ville være gået tabt.

Succesgraden ved indførelse af nye processer er stærkt afhængig af deltagernes forudsætninger, faciliteringen af processen og det faglige input samt - ikke mindst - bygherrens ambitionsniveau.

De eksisterende bygningsressourcer, bør behandles således, at de giver størst mulig værdi. Affaldshierarkiet prioriterer genbrug før genanvendelse, og genanvendelse før nyttiggørelse. Kan vi derfor bevare vores eksisterende bygningsmasse via renoveringer frem for at nedrive, kommer vi tættere på en værdiskabende cirkulær økonomi.

Dialogværktøjet initierer en proces, hvor værdierne søges først på bygningsniveau, dernæst på bygningsdelsniveau og sidst på materialeniveau. Kan en bygning ikke bevares i sin helhed, bør de ressourcer der fremkommer ved nedbrydning, planlægges genbrugt og genanvendt efter højeste niveau i affaldshierarkiet.

Dette værktøj skal skabe rum og mulighed for at se på cirkulære potentialer i eksisterende byggeri. Denne proces gennemføres via tre trin, som implementeres i byggeriets faser. Trinene påvirker hinandens muligheder og potentialer, og kan derfor tænkes i en iterativ proces.
Trin 1 gennemføres i den tidlige programfase, således resultatet kan integreres i byggeprogrammet.

Trin 2 gennemføres i den tidlige projekteringsfase, for at sikre størst muligt omfang af cirkulære løsninger.

Trin 3 gennemføres i projekterings- og udførelsesfasen. For at opnå størst værdiskabelse kan det undersøges tidligt i programfasen om der er øvrige igangværende projekter med potentielle for matchning.
Trin 1:
Kan bygningen bevares i sin helhed?

Formål
Formålet med trin 1 er at hjælpe bygherren med at generere og kvalificere idéer til cirkulære løsninger som inspiration til et byggeprogram.

Fremgangsmåde
Der udarbejdes en undersøgelse som en kombination af kortlægning, dialogmøde, beskrivelser og skitsering.

Denne undersøgelse inddeles i følgende arbejdsemner:

- a - Hvad har vi? (registrering)
- b - Hvad kan vi gøre? (dialogmøde)
- c - Hvad gør vi? (dialogmøde)
- d - Hvordan gør vi det? (byggeprogram)

Dialogmødet har form som en workshop. Inden dialogmødet vælges en facilitator, som kan stå for planlægningen samt gennemførelsen af dialogmødet.

Facilitatoren kan drive processen ved at bruge spørgsmålscortene på de følgende sider. Facilitatoren skal have overblik over de arbejdsemner b og c og have indsamlet de informationer, som det kræver for at afholde dialogmødet.

Resultat
Efter gennemgang af ovennævnte arbejdsemner er der skabt et overblik over, hvilke dele af bygningen der ønskes bevaret.

Eksempel: Skolebygning fra 1950’erne

Klimabelastning af bygningen

En livscyklusvurdering (LCA) kan vise CO₂-aftrykket for forskellige scenarier, her: Bevaring, Ombygning og Nybyggeri.

Eksemplet viser to forskellige tendenser: Energiforbruget er højest ved den eksisterende skole og kan reduceres ved en dybtgående renovation eller ved nybyggeri. Omvendt er CO₂-aftrykket for materialer højest for nybyggeri og lavest ved bevaring set over betrækningsperioden på 50 år.

Klimabelastningen for materialer kan nedbringes ved at anvende cirkulære løsninger, som er beskrevet i publikationens LCA-afsnit.

<table>
<thead>
<tr>
<th>Bevaring</th>
<th>Driftsenergi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materialer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ombygning</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nybyggeri</th>
<th></th>
</tr>
</thead>
</table>

Enhed: kg CO₂-ækvivalenter pr. m² pr. 50 år
1a - Hvad har vi?

Der foretages en **registrering** ved at indsamle faktuelle informationer om bygningen og området.

Kommunens byggeafdeling kontaktes med henblik på registrering af bygningens årstal, størrelse, type, stil, konstruktioner, miljøkortlægning, tilstand mm.

Hvis kommunen ikke har alle oplysningerne om bygningen, kan det være en hjælp at se på hjemmesiden danskebygningsmodeller.dk. Her kan man se digitale bygningsmodeller og finde informationer om bygningskonstruktioner fra fem forskellige tidsperioder.

1b - Hvad kan vi gøre?

Der afholdes et **dialogmøde**, hvor deltagerne præsenteres for principperne for cirkulær økonomi. Deltagere til dialogmødet kunne være bygherre, kommune, rådgivere, entreprenører, naboer, sociologer mm.

Ved dialogmødet afklareres mulighederne for projektet samt det mest ambitiøse niveau i forhold til cirkularitet, for eksempel bevarelse af eksisterende anvendelsesformål, ændring af anvendelse på grund af fremtidige planer eller noget helt andet.

Fremtidige planer for området kortlægges inklusiv behov for udvikling i forhold til igangværende og (nær-)fremtidige projekter. Lokalplanen for området bør inddrages. Endvidere undersøges øvrige igangværende projekter med potentielle for matchning.
1c - Hvad gør vi?

Der afholdes yderligere et dialogmøde for at vurdere mulighederne fundet i 1.b.

Her er det vigtigt at ambitionsniveauet er klart og tydeligt formuleret.

Ved dialogmødet anvendes faciliterende spørgsmål:
- Idékvalificering

1d - Hvordan gør vi det?

På baggrund af deindsamlede faktuelle informationer om bygningen samt resultaterne af dialogmødet, kan der udarbejdes skitser og beskrivelser som udkast til et byggeprogram.

Skitser og beskrivelser skal skabe overblik over:
- Anvendelsesformålet med bygningen
- Hvilke dele af bygningen der bevares
- Hvilke dele der ønskes revet ned
Opvarmningsspørgsmål

Formålet med disse spørgsmål er, at alle deltagere får indblik i hinandens profession, ansvarsområder med videre, og at der opbygges relationer til hinanden.

1. Jeg hedder ___ og jeg hjælper de andre med at ___ derfor bliver deres resultater ___.

2. Hvad forventer du at få ud af at deltage i denne workshop?

3. Hvad glæder du dig til i dag?

4. Hvad er din kærophæst?
Formålet med disse spørgsmål er at deltagere trækker på tidligere erfaringer, reflekterer, tolker og eventuelt begynder at få fælles forståelse for begrebet cirkulær økonomi. Derudover må deltagere gerne begynde at relatere til tidligere erfaringer og oplevelser, og se dem i nye sammenhænge.

5. Kan I komme i tanke om et projekt, på baggrund af oplægget, hvor I havde cirkulære løsninger i projektet? Hvis ja, beskriv eksemplerne. Hvorfor tror I, at I valgte de løsninger? Hvilke barrierer oplevede I?

6. Kan I komme i tanke om et projekt, hvor der havde været mulighed for cirkulære løsninger, men som ikke blev til noget? Hvorfor blev det ikke til noget? Hvad betyder det for dig, at det ikke blev til noget? Hvad kunne man have gjort anderledes?

7. På baggrund af diskussionen om CØ, hvad forstår I bedre nu, og hvad mangler I at diskutere yderligere?

8. Hvordan kan du bringe cirkulære ideer i spil ud fra din position?
Notér små stikord fra jeres svar i en tabel og afslut runden med en kort opsummering af de vigtigste pointer:
- Idéer
- Barrierer / udfordringer
- Muligheder

9. Kan I se hvilke udfordringer der er vigtige at italesætte tidligt i processen?

10. Beskriv to cirkulære idéer på baggrund af et af jeres tidligere projekter. Én som ville kunne have været implementeret. Og én som ville have udfordret projektet.

11. Kan I komme i tanke om andre projekter med gode cirkulære løsninger? (projekter som I ikke selv har været en del af)

12. Hvad er ambitionsniveaulet for CØ i projektet?
Idégenererering

Formålet med disse spørgsmål er, at deltagerne finder frem til idéer og mulige løsninger, som vil kunne skabe værdi i det konkrete projekt. Det der er vigtigt i denne runde er, at alle får god tid til at fortælle om deres tanker, og at diskussionen er saglig og faglig.

13. Deltagere finder i samarbejde fem vigtige faktorer, der har indflydelse på beslutningen om, hvorvidt denne bygning skal beholdes og renoveres eller nedrives?

15. Beskriv i samarbejde fem idéer med udfordrende muligheder, der dog alligevel kan blive en realitet.
Undgå at kritisere idéerne i denne runde, men deltag med en så kaldt ”JA-hat”. Ideerne udvælges senere. Vælg en skribent. Noter idéerne ned i forhold til:
- potentielle muligheder
- udvalgte muligheder

16. Beskriv i samarbejde to idéer som er realistiske og kan lade sig gøre uden nogen større udfordringer.

17. Udvælg tre hovedudfordringer ud fra alle jeres idéer. Diskuter de udvalgte udfordringer og hvordan de kan løses.

18. Hvad er formålet med, at cirkulær økonomi ønskes tænkt ind i projektet?

19. Skab et overblik over alle idéer (både dem som kan og som ikke kan realisereres). Giv dem en overskrift og evt. et tema (f.eks. ”nedrivning” ”renovering” ”ændring af anvendelse” osv.)
Idékvalificering

Formålet med disse spørgsmål er, at deltagerne kvalificerer idéerne set i forhold til det valgte ambitionsniveau for CØ i projektet. Dette er input til et kommende byggeprogram. I denne runde skal udføres en SWOT-analyse, hvor følgende overvejes: Strengths, Weaknesses, Opportunities og Threats (styrker, svagheder, muligheder og trusler). Dette er et enkelt og et effektivt redskab, som I kan anvende til at

20. Genopfrisk ambitionsniveauet for cirkulær økonomi i projektet.

22. Diskuter betydningen af SWOT-analysen.
analysere, hvordan idéerne passer til projektet. Notér følgende i en tabel:
- de kvalificerede idéer
- de tilhørende konklusioner fra SWOT-analysen
- de idéer som understøtter ambitionsniveauet bedst

24. Hvad forstår vi bedre nu? Hvad mangler vi at diskutere yderligere?

Trin 2: Kan bygnings dele og materialer bevares?

Formål
Byggeprogrammet har defineret ambitions niveaulet for cirkulære løsninger i projektet. I trin 2 ser vi på, hvorledes ambitionsniveaulet kan omsættes i praksis. Er der for eksempel en del af bygningen, der skal nedrives, ønskes denne genbrugt i størst muligt omfang. Formålet med trin 2 er at identificere så mange bygnings dele og materialer som muligt, der kan genbruges i renoveringsprojektet.

Fremgangsmåde

Resultat
- En ressourcekortlægning som er en oversigt over alle de bygnings dele og materialer, der er for genbrug/genanvendelse/nyttiggørelse i projektet eller andre projekter, når bygningen nedbrydes.
- Et dokument med mulighederne, der er for at genbruge bygningsdelene og materialerne i projektet.

Beslutninger
- En oversigt over ressourcer, der ønskes anvendt i bygningen
- En oversigt over ressourcer, der kan sælges videre
- En oversigt over ressourcer, der mangler, og som kan forsøges matchet fra andre byggeprojekter.

Eksempel: Skolebygning fra 1950’erne

Klimabelastning af ydervæggen

En livscyklusvurdering (LCA) kan vise CO₂-aftrykket for forskellige bygningsscenarier, fx Bevaring, Ombygning og Nybyggeri.

Hvert scenario kan yderligere deles op i konventionelt og cirkulært materialebrug.

I dette eksempel for skolens ydervæg er CO₂-aftrykket for materialer ved nybyggen højest (hvid bjælke), men kan nedsættes ved en cirkulær tilgang, fx med genbrugte betonelementer. Den eksisterende murde ydervæg har derved en meget lav klimabelastning. Se også beskrivelsen af skolens bygnings dele i anden del af publikationen.

CO₂-aftryk

Bevaring
- Konvensionel
- Cirkulær

Ombygning

Nybyggeri

Enhed: kg CO₂-ækvivalenter pr. m² pr. 50 år
2a - Hvad har vi?

Det undersøges, hvilke bygningsdele der er til rådighed i den eksisterende bygning. Scenariet kan være, at dele af bygningen bevares, og dele skal nedrives.

Fra den del af bygningen, der nedrives, søges så mange bygningsdele og materialer som muligt genbrugt i andre sammenhænge, og ressourcerne registreres i en ressourcekortlægning.

Miljøstyrelsens rapport "Ressourcekortlægning af bygninger, Miljøprojekt nr. 2006, April 2018" kan med fordel anvendes som guideline.

Som resultat udarbejdes en ressourcekortlægning.

2b - Hvad kan vi gøre?

Mulighederne for anvendelse af bygningsdelene og materialerne i projektet undersøges. Med afsæt i ressourcekortlægningen, findes mulige løsninger på genbrug af ressourcerne i projektet.

Der indkaldes til et projektmøde, hvor så mange fagligheder som muligt er repræsenteret. Gennem idé-generering oplistes mulighederne for genbrug/genanvendelse/nyttiggørelse af så mange ressourcer som muligt.

Det skitserede projekt vil muligvis kræve revidering, efter at der er set på muligheder for genbrug og genanvendelse af bygningsdelene.

Der udarbejdes et dokument med mulighederne.
2c - Hvad gør vi?

Når de bygningsdele og materialer, der er tilrådighed, er kortlagt (ressourcekortlægningen), og der er udarbejdet et dokument med muligheder for, hvad der kan gøres, skal der tages beslutninger.

Der tages beslutninger for, hvilke af de eksisterende bygningsdele og materialer, der ønskes anvendt i bygningen. En oversigt udarbejdes.

De resterende bygningsdele og materialer kan sælges videre. Der genereres en oversigt over disse, for at lette arbejdet med matchning efterfølgende.

Yderligere skal der udarbejdes en oversigt over hvilke bygningsdele og materialer, der mangler, således at der senere kan søges matchning fra andre byggerier. En oversigt udarbejdes.

2d - Hvordan gør vi det?

Det skal undersøges, hvordan bygningsdele og materialer kan indarbejdes. Dette er en del af den videre projektering.
Trin 3: Kan ressourcerne matches?

Formål
Formålet med trin 3 er at matche så mange ressourcer som muligt for økonomisk, social og miljømæssig gevinst. De ressourcer, der skal nedrives, men hverken genbruges, genanvendes eller nyttiggøres i selve projektet, søges solgt til andre projekter. Endvidere findes eksisterende ressourcer fra andre projekter, til direkte genbrug, genanvendelse eller anden nyttiggørelse i dette projekt.

Fremgangsmåde
Matchningprocessen opdeles i salg af ressourcer og køb af ressourcer.

I vurderingerne kan LCA anvendes.

På samme vis skabes der et overblik over alle de muligheder, der er for indkøb af eksisterende bygnings dele og materialer fra andre projekter. Se litteraturlisten for idéer til aftagere/opkøbere.

På baggrund af dette overblik skabes kontakt til aftagere/sælgere.

Resultat:
• Salg af eksisterende ressourcer fra projektet.
• Køb af eksisterende ressourcer fra andre projekter.
• Minimeret brug af jomfruelige ressourcer.
3a - Hvem kan ressourcerne sælges til?

I trin 2c blev der udarbejdet en liste over de bygningsdele og materialer, der kunne undværes i den eksisterende bygning. Ud fra denne liste overvejes mulige anvendelser af bygningsdelene og materialerne: Hvem kan ressourcerne sælges til?

Eksempel: producenter, der opkøber træbjælker til:
- direkte genbrug
- genanvende som trægulve
- genanvendelse i produktion af byggeplader
- nyttiggørelse i energiproduktion ved afbrænding.

Yderligere kan der forberedes en fremvisning af bygningen til mulige opkøbere. Dette er en forberedelse til selektiv nedrivning.

3b - Hvem kan ressourcerne købes af?

I trin 2c blev der udarbejdet en liste over de bygningsdele og materialer, der mangler i projektet.

Med afsæt i denne liste undersøges mulige byggeprojekter, hvorfra ressourcer kan indkøbes.
matchning sb.,-en, -er, -erne ['mæd₇nɛn]

At tilbyde eller efterspørge ressourcer fra et nedrivningsprojekt til opbygning af bygningsdele i et andet byggeprojekt.
Oversigt

Processen består af en forudgående kortlægning af de faktuelle informationer om bygningen og området. Dernæst dialogmøder og projektmøder, hvor dialogværktøjet kan agere vejledning til processen.

Trin 1
Kortlægning af bevaringspotentiale for bygningen som helhed

Trin 2
Kortlægning af genbrugs- og matchningspotentiale for materialer og bygningsdele

Trin 3
Matchning ved køb/salg af ressourcer
I inspirationslisten bagerst i publikationen er der henvisninger til hjemmesider og apps, hvor der handles og byttes med genbrugsbyggematerialer.
Katalog over cirkulære løsninger
Eksempelbygning

LCA er anvendt på et bygningseksæmpe for at vurdere klimabelastningen ved forskellige scenarier for bygningen: Bevaring, Ombygning og Nybyggeri. LCA kan bidrage til et bedre beslutningsgrundlag ved håndtering af bygninger, som står til nedrivning.

Case

Der tages udgangspunkt i tre scenarier for en typisk skolebygning fra 1950’erne: Bevaring, Ombygning og Nybyggeri med forudgående nedrivning af den eksisterende skole. Scenariers klimabelastning beregnes ud fra en betragtning over en periode på 50 år.

Det antages, at skolebygningen er slidt og de fysiske rammer står i konflikt med nye, ændrede behov. Antagelser og resultater er specifikke for dette eksempel og kan ikke overføres for andre bygninger. Fx ville forskelle i den eksisterende bygnings energiforbrug eller en mindre omfattende renovering give andre resultater og dermed konklusioner.

Scenarier

I Bevaringscenariet bliver der ikke udført større ændringer end dem, der er nødvendige for at bevare bygningen. Der udskiftes fx vinduesruder og gulvbelægning, og overfladerne males.

Renovering indebærer udvendig efterisolering af facaden med ny formur, efterisolering af skråtaget og nye vinduer, så Renoveringsklasse 1 overholdes. Derudover medregnes nedrivning af de bygningsdele, som er berørt af renoveringen.

I scenariet Nybyggeri antages for forenklingens skyld, at skolen genopbygges i samme form, blot med tidssvarende konstruktioner og overholdelse af BR18 energigrammen. Dertil kommer nedrivningen af den eksisterende skole.

Alle tre scenarier har opvarmet loft og kælder og løvfældt identisk etageareal og opvarmet areal.

Drift og materialer

Grafen baseret på en konventionel tilgang viser, at den eksisterende bygning har højt forbrug af driftsenergi i forhold til Ombygningen og især Nybyggeriet. Omvendt er klimabelastningen fra materialer lavest ved Bevaringen, da der ikke udføres nogle større forandringer i modsætning til de andre scenarier. I den valgte case er der altså to modstridende tendenser for henholdsvis energi- og materialesforbrug.

Søjlen materialer inklusiv potentialer viser klimabelastningen fra materialer, hvor der er indregnet potentielle besparelser udenfor skolebygningens rækkevidde. Dette kan være en mængde mursten, som vil være til rådighed for genbrug efter nedrivningen, og som ikke genbruges i det pågældende projekt.

Konventionel og cirkulær tilgang

Bygningsdele

Det følgende afsnit behandler de bygningsdele, der indgår i dette beregningseksæmpe. Alle væsentlige løsninger bliver præsenteret, både den konventionelle og den cirkulære variant.
Konventionel tilgang

- Bevaring
- Ombygning
- Nybyggeri/nedrivning

Cirkulær tilgang

- Bevaring
- Ombygning
- Nybyggeri/nedrivning

* Enhed: kg CO₂ækvivalenter pr. m² pr. 50 år

Driftsenergi

Materialer

Materialer inklusiv potentialer ved endt levetid
Eksempler på bygningsdele

LCA er anvendt på et bygningseksempel for at vurdere klimabelastningen ved forskellige scenarier for bygningen: Bevaring, Ombygning og Nybyggeri. På de følgende sider vises klimabelastningen af 1 m² bygningsdel.

Livscyklusfaser

Scenarie: Bevaring

Scenarie: Ombygning
Ved Ombygningen regnes der med klimabelastning fra de nyinstallerede dele (fx efterisolering), udskiftninger både af nye og eksisterende dele samt nedrivning af bygningen.

Udover udskiftning og potentialer ved nedrivning har man også mulighed for at vælge mere gennemgribende cirkulære løsninger, fx til klimaskærmen, gulve eller skillevægge.

Scenarie: Nybyggeri
Forudsætning for scenariet Nybyggeri er nedrivning af den eksisterende bygning. Som største påvirkning indrages der etablering af den nye bygning, udskiftninger og den efterfølgende nedrivning.

Sammenlignet med Ombygning er der her mulighed for endnu større og sammenhængende cirkulære løsninger, herunder for de bærende konstruktioner.

Konventionel og cirkulær
De konventionelle varianter repræsenterer normal praksis uden særligt hensyn til miljø. Resultatet er vist i en grøn sky. Den hvide sky medtager potentielle besparelser i klimabelastning der sker udenfor projektet, fx når produkter der udskiftes eller nedrives fra skolebygningen sendes til genanvendelse i vej. De potentielle besparelser fra de konventionelle løsninger viser dermed hvordan det ser ud i dag.

Resultater for de cirkulære løsninger er opbygget efter samme princip med den forskel, at der vælges løsninger baseret på en cirkulær tankegang, dvs. materialestrømme, som indeholder en vis andel af genbrug og genanvendelse. Yderligere potentielle besparelser udenfor projektet er angivet i den hvide sky. Disse potentialer kan også indebære mindre kendte og uafprøvede løsninger, som er nærmere beskrevet i afsnittet om Cirkulære Løsninger.
Forklaring af resultatvisning for bygningsdele

1,2 Ved renovering kan der være dele af en bygningsdel, som nedrives hhv. tilføjes

Nedrivning af eksisterende bygningsdel

Klimalastning kan bestå af 3 typer tiltag:
1. Ændringer her og nu
2. Udskiftninger i løbet af 50 år
3. Bygningsdels potentiale udenfor projektet

Klimalastning set over 50 år i enheden kg CO₂-ækvivalenter pr. 1 m² bygningsdel

Konventionel

Cirkulær

Scenariet for bygningsdelen baseret på et cirkulært materialevalg
Hvid sky: Klimalastning inklusiv potentiale udenfor projektet fx genbrug i andre bygninger
Grøn sky: Klimalastning indenfor projektets afgrænsning

Sammensætning af livscyklusfaser i de tre scenarier

Nedrivning af eksisterende bygningsdel
Ny bygningsdel
Udskiftning af bygningsdel
Nedrivning af bygningsdel

Resultat (Konventionel)
Resultat (Cirkulær)

Bevaring

Ombygning

Nybyggeri

1² Ved renovering kan der være dele af en bygningsdel, som nedrives hhv. tilføjes
Eksempler på bygningsdele

Ydervæg

Eksisterende bygningsdel:
Malerbehandling
15 mm kalkpuds
120 mm letbetonsten
240 mm teglmur, kalkmørtel

Bevaring

Konventionel

→ Ingen

Cirkulær

→ Ingen

Ombygning

→ Malerbehandling
200 mm mineraluld
120 mm teglformur, kalkmørtel

→ 2x Malerbehandling

→ Knust mursten til bærelag i vej

→ Gammel mur til genbrugsmursten
Ny formur til genanvendelse som bærelag i vej

→ Malerbehandling
200 mm mineraluld
120 mm formur af genbrugsmursten

Ny formur til genbrugsmursten

→ 2x Malerbehandling

→ Gamml mur til genbrugsmuralsten

→ 3x Malerbehandling

→ Knust mursten til bærelag i vej

→ 3x Malerbehandling

→ Mursten til genbrugsmursten

Nybøggeri

→ Malerbehandling
150 mm letbetonelement
300 mm mineraluld
120 mm teglformur, kalkmørtel

→ 2x Malerbehandling

→ Knust mursten til bærelag i vej

→ 2x Malerbehandling

→ Betonelementer til genbrugsbeton

Ændringer her og nu

Udskiftninger over 50 år

Påvirkninger inklusive potentialer udenfor projektet
Klimabelastning angivet i kg CO₂-ækvivalenter pr. m² pr. 50 år

Tag

Eksisterende bygningsdel:
Tegel
Lægter
92/157 mm bjælkespær
hanebåndsspær, skunkstolper
100 mm mineraluld
13 mm gipsplader

Bevaring

Konventionel

Ændringer her og nu
Ingen

Udskiftninger over 50 år
1x Tagtegl
1x Mineraluld

Påvirkninger inklusive potentialer udenfor projektet
Knust tagtegl til bærelag i vej

Cirkulær

Ændringer her og nu
Ingen

Udskiftninger over 50 år
1x Genbrugte tagtegl
1x Mineraluld

Påvirkninger inklusive potentialer udenfor projektet
Spær og stolper til genbrug
Lægter til genanvendelse i spånplader

Ombygning

Tagtegl
Lægter, afstandslister
47/300 mm påføringsspær
Undertag, membran
400 mm mineraluld
Dampspærre

Ændringer her og nu
Ingen

Udskiftninger over 50 år
1x Genbrugstagtegl
47/300 mm påføringsspær
Lægter, afstandslister
Undertag, membran
400 mm mineraluld
Dampspærre

Påvirkninger inklusive potentialer udenfor projektet
Knust tagtegl til bærelag i vej

Nybryggeri

Tagtegl
Lægter, afstandslister
47/350 bjælkespær
Undertag, membran
300 mm mineraluld
Dampspærre
95 mm påføring og mineraluld

Ændringer her og nu
Ingen

Udskiftninger over 50 år
1x Genbrugstagtegl
47/350 bjælkespær
Genbrugte tagbjælker
Undertag, membran
(Isolering som konventionel)

Påvirkninger inklusive potentialer udenfor projektet
Knust tagtegl til bærelag i vej
Eksempler på bygningsdele

Terrændæk

Eksisterende bygningsdel:
- 2 mm vinyl
- 4 mm fiberplade
- 30 mm afretning
- 50 mm porebeton
- 100 mm armeret beton
- 150 mm grus

Konventionel
- Ingen
- 1x Vinyl
- Knust beton til bærelag i vej

Cirkulær
- Ingen
- 1x Vinyl
- Knust beton til genbrugsbeton

Bevaring

Ombygning

Nybryggeri

Ændringer her og nu
- Udskiftninger over 50 år
- Påvirkninger inklusive potentialer udenfor projektet

Eksisterende Renoveringer

R6 (opd.) R2 R3 R4 R1
N1 N2 N3 N4 N5 N6 N7 N8 N9 N10
E1 E2 E3 E4 E5 E6 E7 E8 E9

Terrændæk

Eksisterende bygningsdel:
- 2 mm vinyl
- 4 mm fiberplade
- 30 mm afretning
- 50 mm porebeton
- 100 mm armeret beton
- 150 mm grus

Konventionel
- Ingen
- 2,5 mm linoleum
- 3 mm trinlydsisolering
- Ingen
- Knust beton til bærelag i vej

Cirkulær
- Ingen
- 2,5 mm linoleum
- 3 mm trinlydsisolering
- Ingen
- Knust beton til genbrugsbeton

Eksisterende bygningsdel:
- 2 mm vinyl
- 4 mm fiberplade
- 30 mm afretning
- 50 mm porebeton
- 100 mm armeret beton
- 150 mm grus

Konventionel
- Ingen
- 2,5 mm linoleum
- 3 mm trinlydsisolering
- 40 mm afretningslag
- Mellemlag, PE
- 120 mm beton
- Fugtspærre, PE-folie
- 350 mm EPS-isolering
- 150 mm stabilgrus
- Ingen
- Knust beton til bærelag i vej

Cirkulær
- Ingen
- 2,5 mm linoleum
- 3 mm trinlydsisolering
- 40 mm afretningslag
- Mellemlag, PE
- 120 mm genbrugsbeton
- Fugtspærre, PE-folie
- 350 mm EPS-isolering
- 150 mm stabilgrus
- Ingen
- Knust beton til genbrugsbeton
Etageredæk

Eksisterende bygningsdel:
- 2 mm vinyl
- 4 mm fiberplade
- 20 mm afretningslag
- 250 mm armeret beton
- Lægter, afstandslister
- 20 mm mineraluld
- 4 mm akustikplade, træfiber

Konventionel

- Gulv: 1x vinyl og fiberplade udskiftes med linoleum og trinlydisolering
- Loft: 1x Lægter
- Loft: 1x 15 mm perforeret krydsfinerplade, akustikdug
- Knust beton til bærelag i vej

Cirkulær

- Gulv: 1x vinyl og fiberplade udskiftes med linoleum og trinlydisolering
- Loft: 1x Lægter
- Loft: 1x 15 mm perforeret krydsfinerplade, akustikdug
- Beton til genbrugsbeton
- Lægter og lister genanvendes i spånplader

Bevaring

- Ingen

Ombygning

- Gulv: 2,5 mm linoleum
- Gulv: 3 mm trinlydisolering
- Loft: Lægter
- Loft: 15 mm perforeret krydsfinerplade, akustikdug
- Ingen
- Knust beton til bærelag i vej

Nybryggeri

- 2,5 mm linoleum
- 3 mm trinlydisolering
- 40 mm afretningslag
- Mellemlag, PE
- 320 mm huldæk
- Lægter
- 15 mm krydsfiner, akustikdug
- Ingen
- Knust beton til bærelag i vej

Øndringer her og nu

- Udskiftninger over 50 år
- Påvirkninger inklusive potentialer udenfor projektet
Eksempler på bygningsdele

Indervægge, ikke-bærende

Eksisterende bygningsdel:
Malerbehandling
15 mm kalkpuds
120 mm teglmur, kalkmørtel
15 mm kalkpuds
Malerbehandling

Bevaring

Malerbehandling
15 mm kalkpuds
120 mm teglmur, kalkmørtel
15 mm kalkpuds
Malerbehandling

Ændringer her og nu

Udskiftninger over 50 år

Påvirkninger inklusive potentialer udenfor projektet

Konventionel

→ Ingen

→ 3x Malerbehandling
1x Teglmur erstattes med 100 mm porebetonvæg

→ Knust mursten til bærelag i vej

Cirkulær

→ Ingen

→ 3x Malerbehandling
1x Teglmur erstattes med 100 mm porebetonvæg

→ Mursten til genbrugsmursten

Ombygning

Malerbehandling
15 mm kalkpuds
120 mm teglmur, kalkmørtel
15 mm kalkpuds
Malerbehandling

Ændringer her og nu

Udskiftninger over 50 år

Påvirkninger inklusive potentialer udenfor projektet

Konventionel

→ Malerbehandling
Teglmur erstattes med 100 mm porebetonvæg

→ 3x Malerbehandling

→ Knust mursten til bærelag i vej

Cirkulær

→ Malerbehandling
Teglmur erstattes med 100 mm porebetonvæg

→ 3x Malerbehandling

→ Mursten til genbrugsmursten

Nyblyggeri

Malerbehandling
2 x 13 mm gipsplade
100 mm stålskeletvæg
95 mm mineraluld
2 x 13 mm gipsplade
Malerbehandling

Ændringer her og nu

Udskiftninger over 50 år

Påvirkninger inklusive potentialer udenfor projektet

Konventionel

→ Malerbehandling
2 x 13 mm gipsplader
100 mm genbrugte stålprofiler
95 mm mineraluld
2 x 13 mm gipsplader
Malerbehandling

→ 2x Malerbehandling
Stål til genanvendelse

Cirkulær

→ Malerbehandling
2 x 13 mm gipsplader
100 mm genbrugte stålprofiler
95 mm mineraluld
2 x 13 mm gipsplader
Malerbehandling

→ 2x Malerbehandling
Mursten til genbrugsmursten
Indervægge, bærende

Eksisterende bygningsdel:
Malerbehandling
15 mm kalkpuds
360 mm tegilmur, kalkmørเต
15 mm kalkpuds
Malerbehandling

Klimabelastning angivet i kg CO₂ ækvivalenter pr. m² pr. 50 år

Ændringer her og nu

Udskiftninger over 50 år

Påvirkninger inklusive potentialer udenfor projektet

Konventionel

- Ingen
- 3x Malerbehandling
- Knust mursten til bærelag i vej

Cirkulær

- Ingen
- 3x Malerbehandling
- Mursten til genbrugsmursten

Bevaring

- Ingen
- 3x Malerbehandling
- Knust mursten til bærelag i vej

Ombygning

- Malerbehandling
- 3x Malerbehandling
- Knust mursten til bærelag i vej

Nybøggeri

- Malerbehandling
 - 200 mm letbetonelement
 - 3x Malerbehandling
 - Ingen

- Malerbehandling
 - 200 mm elementer af 50% genbrugete elementer og 50% elementer af genbrugsbeton
 - 3x Malerbehandling
 - Genbrugete betonelementer til genbrugsbeton
Eksempler på bygningsdele

Vinduer

Eksisterende bygningsdel:
Karm og ramme af træ
2-lags ældre termoruder

Konventionel

Bevaring

Ingen

Træ-/alu vinduer
2x 3-lags termoruder

Ombygning

1x 3-lags termoruder

Nybyggeri

1x 3-lags termoruder

Ændringer her og nu

Udskiftninger over 50 år

Påvirkninger inklusive potentialer udenfor projektet

Cirkulær

Kassevinduer af virgint træ

Genbrugte 2-lags-termoruder i to lag

1x kassevinduer af virgint træ

Genbrugte 2-lags-termoruder i to lag

Kassevinduer af virgint træ

Genbrugte 2-lags-termoruder i to lag

Genbrugte 2-lags-termoruder i to lag
Eksempler på materialer

Den følgende inspirationsliste præsenter cirkulære løsninger for en række materialer og deres potentialer indenfor kategorierne: Klimabelastning, Cirkularitet, Modenhed og Kredsløbspotentiale.

Klimabelastning

Skyens hvide andel er besparelsen ved den pågældende cirkulære løsning sammenlignet med en konventionel reference. Skyens bredde svarer til 100% klimabelastning for den konventionelle løsning.

Klimabelastningen medregner produktion, udskiftninger og affaldsbehandling over en betragsningsperiode på 50 år samt potentialer udenfor projektet. Der regnes ikke med udskiftninger for bygningsdele med en tredjedel eller mindre af restlevetiden før nedrivningen samt i betragsningsperiodens sidste 10 år.

Alle viste cirkulære løsninger regnes med at have den samme levetid som en tilsvarende konventionel løsning, da udgangsmaterialet antages at vælges i tilstrækkelig kvalitet. Undtagelsen er genbrugte termoruder og genbrugstagsten, som er sat til halvdelen af det tilsvarende nye produktets levetid.

Løsningerne kan have andre miljømæssige forudsætninger eller effekter, som ikke er medtaget her.

Cirkularitet

Cirkularitet betyder her, hvor meget en løsning er egnet til at blive recirkuleret og samtidig bevare dens højest mulige værdi. Dette symboliseres ved placering i affaldshierarkiet.

Man kan fx se på en væg af betonelementer. Når elementerne flyttes fra deres oprindelige placering til et nyt projekt, er der tale om genbrug, da elementerne bevarer deres værdi.

I det tredje scenarie knuses elementerne og bruges som bærelag i vej. Værdien som materiale i byggeriet er gået tabt. Alligevel gør materialet en vis nytte i anden sammenhæng, hvorfor der er tale om anden nytiggørelse.

Hvis elementerne er forurendede, er der tale om bortskaffelse uden en større nytteværdi.
Kredsløbspotentiale

Kredsløbspotentialet beskriver løsningens egnethed til en cirkulær materialeøkonomi, hvor udtømning af begrænsede råstoffer undgås og materialers værdi bevares på et højt niveau.

Mens kategorien Cirkularitet beskriver, hvordan materialer genbruges her og nu, ser kredsløbspotentiale også i fremtiden. Det er her, potentialer udenfor en given projektafgrænsning kommer i spil.

Potentialerne kan ofte inddeles lukkede tekniske eller biotiske kredsløb på den ene side og kaskadeanvendelse på den anden. Der kan også forekomme kombinationer.

Lukkede kredsløb, fx for metaller, har kun marginalt ressourcetab og produkter baseret på genanvendt metal har den samme kvalitet som det jomfruelige metal.

Ved hvert nyt kredsløb i en kaskadeanvendelse forekommer der ressource- og værditab. Fx kan rudeglas blive genbrugt én gang, for derefter at blive til glasuld og til sidst at gå til deponering.

Modenhed

Modenhed beskriver løsningens udviklingsstadie, parathed til markedet og udbredelse i branchen. Modenhed er vigtigt at tage med ved sammenligning af varianter, som indebærer nye, innovative løsninger. En eksperimentiel løsnings lave klimabelastning skal ses i lyset af dens usikkerhed, dvs. om produktet kan levere den ønskede ydelse over den forventede levetid sammenlignet med et tilsvarende kendt produkt. Omvendt kan usikkerhederne reduceres i takt med anvendelse og test af nye løsninger, som er med til at løfte produktets modenhed.

Normal praksis betyder her, at løsninger er hyldevarer. Andre løsninger kan have en begrænset udbredelse som specialløsninger, men er blevet afprøvet og dokumenteret med succes. Det tredje trin udgør eksperimentelle løsninger, som indebærer en vis risiko på grund af manglende afprøvning og langtidserfaring.
Genbrug af mursten i formur i stedet for nye mursten reducerer den potentielle klimabelastning for den nye mur med 78% over dens levetid sammenlignet med nye mursten. Reduktionen opnås, fordi man undgår at brænde nye mursten, da brænding er en energikrævende proces, der frigiver drivhusgasser. Der regnes med, at 65% af murstenene fra den originale mur kan genbruges.

Eksempler på materialer

Genbrugsmursten

Teknologi

Klimabelastning

- 78% CO₂-besparelse
Genbrug af mursten ligger højt i affaldshierarkiet, fordi man bevarer murstenene og genbruger dem, som de er. Der indgår kun processer til nedrivning og rensning af murstenene.

I ældre bygninger har murstensvægge både haft en bærende og stabiliserende funktion samtidig med at fungere som termisk masse i bygningen. I dag bruges teglsten typisk kun i formur, hvor mange af murstenens funktioner ikke bliver udnyttet.

Selvom mursten tidligere ofte blevet genbrugt på grund af deres høje materialeværdi, mangler der langtidserfaringer med holdbarheden af genbrugsmursten i moderne byggeri.

LK

Cirkularitet

Kredsløbspotentiale

Modenhed
Eksempler på materialer

Genbrugsbeton

Ved genanvendelse af beton bruges knust beton som tilslag i den nye betonblanding. Dermed erstattes jomfruelig grus, som er en begrænset ressource i Danmark og globalt.

En af forudsætningerne for genanvendelse er en ensartet kvalitet af den beton, der skal genanvendes. Materialets egenskaber testes før nedrivning, for at vurdere, om det er egnet til at indgå i den nye blanding. Ligeledes testes den nye beton i forhold til anvendelse. Det kan bedst betale sig miljømæssigt og økonomisk, hvis nedrivning, oparbejdning, blanding af ny beton og nybyggeriet sker ved brug af mobile anlæg uden større transportafstande. Der skal tages hensyn til mulige gener for omgivelserne.

Genbrugsbeton, som erstatter 100% af stenmaterialet, reducerer kun marginalt den potentielle klimabelastning sammenlignet med beton der indeholder jomfrueligt tilslag.

Forbedringen er lav, da løsningen ikke reducerer behovet for den energikrævende cement.

Den genanvendelige andel af nedknust beton er sat til 50%, da meget af den nedknuste beton er for finkornet som tilslag. I både den cirkulære og konventionelle løsning antages betonen, at blive genanvendt som bærelag i vej ved endt levetid.

Klimabelastningen af genbrugsbeton er stærkt afhængig af transportafstandene. For at opnå den angivne besparelse forudsættes det at den nedknuste beton ikke behøves at transporteres, dvs. at den genanvendes på stedet.
Genanvendelse af beton ligger i midten af affaldshierarkiet, fordi materialet omformes, inden det indgår i produktionen af ny beton.

Grusmaterialet til beton er en knap ressource i Danmark. Hvis ikke betonelementerne kan bevares eller genbruges, er genanvendelse af nedknust beton i produktionen af ny beton stadig relevant for at undgå import af grusmateriale med lange transportafstande.

Beton kan være svær at genbruge i dagens praksis, hvor elementer støbes sammen. Udviklingsprojekter har dog vist, at der er muligt at designe elementsamlinger, som kan skilles ad efter endt brug. Dette ville muliggøre direkte genbrug, henholdsvis lette nedtagning og knusning til genbrugsbeton.

Fundamenter vil også kunne bevares den dag, bygningen rives ned, og kan indgå som fundament i en ny bygning. Ellers kan betonen nedknuses og bruges til ny beton eller som bærelag i vej.

Der er ikke praktiske erfaringer med udviklingen af kvaliteten ved flere gange nedknusning og nyblanding af beton.

Genbrugsbeton med mere end 20% genbrugt stenmateriale blev tested i nyere demonstrationsprojekter. Betonen bruges typisk til fundament, afretningslag og belægninger, i mindre grad til vægge. En større andel af knust tilslag end 20% og anvendelse udover passiv miljøklasse kræver dispensation af kommunen.

Betonfraktionen skal være fri af forureninger som fx PCB, have en tilstrækkelig styrke og kvalitet passende til anvendelse. Genbrugsbeton er ikke en standardløsning, kræver flere test og analyser og match mellem nedrivning og nybyggeri med hensyn til kvalitet og transportafstand. Der er endnu ikke blevet bygget en bygning, hvor alle bygningsdele af beton indeholder nedknust tilslag.
Elementbyggeri har stort potentiale med hensyn til demonterbarhed og genbrug. Da betonelementbyggerier, som blev bygget i stort omfang siden 1960erne, ikke er forberedte til genbrug, er der behov for specifikke metoder til adskillelse af de forskellige samlinger.

Selvom der ikke er erfaring med det i Danmark, har internationale forsøgsbyggeri vist, at det er muligt at bygge enfamilieshuse eller tæt/lav boligbyggeri ved at genbruge elementer fra etageboligbyggerier.

Genbrug af hele elementer reducerer den potentielle klimabelastning med 96% sammenlignet med jomfruelige betonelementer. Grunden til dette er, at elementerne bibeholdes i deres form, mens klimatunge processer, som brænding af ny cement, undgås.

Klimabelastningen fra de genbrugte elementer forårsages kun af affaldshåndtering ved endt levetid. Processer på byggepladsen, herunder nye samlinger, indgår ikke i beregningen.

Der er ikke regnet med betonskæring for tilpasning af elementer til nye formål eller åbninger.
Direkte genbrug ligger højest i affaldshierarkiet. Derudover bevares elementernes værdi bedst muligt, fordi funktionaliteten som dæk- og vægelementer bibeholdes.

En væsentlig udfordring ligger i elementernes eksisterende udformning, som muligvis ikke er egnet til de nuværende behov, herunder etagehøjde, facadens åbningsgrad, spændevidde og lydkrav.

Betonelementer, som ikke udsættes for vejr, kan have meget lang levetid. Det kritiske punkt for direkte genbrug er design for adskillelse, som kan muliggøre flere livscyklusser. Resultatet er også følsom overfor, hvor mange elementer, der går til spilte ved genbrug. En udfordring kan være at overføre viden om adskillelsesmetoden og elementets ydeevne henover flere genbrugscyklusser.

Ydervægselementer, som anvendes som klimaskærm, regnes med at være nedslidte og dermed ikke til rådighed for direkte genbrug mere. Disse elementer kan knuses og genanvendes som tilslag i ny beton.

Eksisterende moderne elementbyggeri er ikke forberedt til genbrug og samlinger er typisk støbt sammen. Genbrug af betonelementer fra den eksisterende bygningsmasse mangler præcedens i Danmark. Det vurderes dog at være muligt at danne et erfaringgrundlag, som kan etablere direkte genbrug som alternativ til nystøbte elementer eller som hybridløsning i forbindelse med andre materialer, fx træ.

Der findes udenlandske erfaringer for genbrug af betonelementer, herunder fra Holland og Tyskland, som forventes at kunne overføres til Danmark. Før dette er afprøvet i forsøg med dansk elementbyggeri, er det svært at vurdere, hvordan de tekniske og økonomiske udfordringer kan løses bedst.
Genbrugte søjler/bjælker af beton

Elementbyggeri har med sin modularitet stort potentielle i en cirkulær tankegang. Nye elementer som søjler og bjælker kan med fordel forberedes til senere demontering og nyinstallation. Da betonsøjler og -bjælker i dagens byggeri ikke er forberedt til genbrug, kræver det en høj grad af teknologi at skille dem ad uden at ødelægge deres funktion.

Genbrug af hele elementer har en 96% lavere klimabelastning end at brug af nye betonelementer fra jomfruelige kilder. Grunden er, at elementer bibeholdes i deres form, mens klimatunge processer, som brænding af ny cement, undgås.

Genbrug af søjler og bjælker ligger højest i affaldshierarikiet. I dag er direkte genbrug udfordrende, da søjler og bjælker ikke er forberedt til afmontering.

Det eksisterende bygningsmasse mangler præcedens i Danmark og har mange ukendte parametre. Det vurderes dog at være muligt at danne et erfaringgrundlag, som kan etablere direkte genbrug som alternativ til nystøbte elementer eller som hybridløsning i forbindelse med andre materialer, fx træ.

Betonelementer, som ikke udsættes for vejr, kan have en meget lang levetid. Det kritiske punkt for direkte genbrug er dermed design for adskillelse med hensyn til flere fremtidige livscyklusser samt omfanget af spild under genbrugsprocessen. Når samlinger kan laves så de kan skilles ad igen, kan elementet indgå i flere kredsløb.
Genbrugte stålprofiler

Stålprofiler til bærende formål har et stort potentiale til genbrug, hvis udgangsmaterialet er beskyttet over for korrosion. Rene stålkonstruktioner som i hal- og industribyggeri med boltede samlinger kan demonteres og samles igen uden tab. Profiler med sjejste samlinger kan skæres fra hinanden og eventuelt sjejes igen. Stålprofiler kan også genbruges i nye sammenhæng, fx som forstærkninger i beton- eller træbyggeri.

Klimabelastning

Genbrug af hele stålprofiler reducerer klimabelastningen i med 78% sammenlignet med en typisk nyproduceret stålprofil, som indeholder 80% genanvendt stål.

De genbrugte elementer bibeholdes i deres form, mens den klimatunge omsmeltning og produktion af nye profiler undgås.

Løsningen kræver en statisk vurdering af de eksisterende elementer, som der ikke er tradition for. Ligesom ved andet direkte genbrug af elementer kan de være nødvendigt at regne med overdimensionering af profilet.

Genbrug af elementer ligger højest i Affaldshierakiet.

Elementbyggeri har med sin modularitet stort potentiale i en cirkulær tankegang.

Cirkularitet

Anvendelse af genbrugte stålprofiler til bærende formål praktiseres ikke i dag. Løsningen kræver en statistisk vurdering af de eksisterende elementer, som der ikke er tradition for.

Ligesom ved andet direkte genbrug af elementer kan de være nødvendigt at regne med overdimensionering af profilet.

Kredsløbspotentiale

Stålprofiler kan genbruges flere gange, forudsat at profilerne er beskyttet over for korrosion. Sandsynligheden for flere cyklidirekte genbrug afhænger desuden af, hvor nemt profil kan skilles ad, og hvor godt det matcher de nye konstruktioners behov fx med hensyn til profilernes dimensioner.
Eksempler på materialer

Genbrugte bærende træbøjler og -stolper

Klimabelastning

Da træ optager CO₂ under væksten, antages dets klimabelastning at være negativ for produktion af de fleste træbyggevarer. Klimabelastningen er lav uanset om det er nyt træ eller genbrugstræ. Forskellen på 77% mellem bærende træ fra genbrug og ny produktion skal derfor ses på et i forvejen lavt niveau af klimabelastning.

Afgørende for resultatet bliver de processer, der er nødvendige for at fremstille produktet, i dette tilfælde transporten af materialer.

Modenhed

Eksisterende moderne elementbyggeri er ikke forberedt til genbrug eller oprindeligt tænkt som materialebank. Genbrug af spærer og træskelet mangler præcedens i stor skala i Danmark.

Der er ikke tradition for statistisk vurdering af de eksisterende elementer, hvilket udgør en udfordring. Som i anden direkte genbrug af elementer kan løsningen ligge i overdimensionering ved manglende erfaring med historiske profilers styrkeegenskaber.

Cirkularitet

Kredsløbspotentiale

Ubehandlet træ beholder en god kvalitet i tørre omgivelser. Antallet af recirkuleringer afhænger af, om man anvender demonterbare samlingssteder og designer i dimensioner, som kan indgå i de mest almindelige sammenhænge.
Selvom der antages en andel af genbrugstræ i produktionen af nye spånplader på 70%, er der begrænset besparelse i klimabelastning ved genanvendelse af affaldstræ sammenlignet med jomfrueligt træ. Dette skyldes, at træ optager CO₂ under væksten, så klimabelastningen regnes for at være negativ for produktion af de fleste træbyggevarer. Påvirkningen fra produktionen er derfor negativ, uanset om der bruges nyt træ eller genbrugstræ.

Spånplader baseret på en væsentlig andel af genbrugstræ er et etableret produkt, som allerede blev udviklet i 1930’erne, og som anvendes i store mængder i byggeri. Egen skaber og ydeevne er harmoniseret i en europæisk standard og produktet er almindelig hyldevare. Producenter angiver ikke andelen af genbrugstræ i nye spånplader.

Spånpladeproduktion ligger lavt i værdikaskaden for træ og bør kun komme i spil for affaldstræ, som ikke kan genbruges mere i sin oprindelige form, men som har en for høj værdi til at blive nyttiggjort til energiproduktion.

I spånplader bidrager kun den genanvendte andel af træ til en teknisk cirkularitet. Spånpladeproduktion ligger lavt i værdikaskaden for træ og bør kun komme i spil for affaldstræ, som ikke kan genbruges mere i sin oprindelige form, men som har en for høj værdi til at blive nyttiggjort til energiproduktion.
Genbrugte gulvbrædder

Uddrag:

Da træ optager CO₂ under væksten, antages klimabelastningen at være et negativt tal for produktion af de fleste træbyggevarer. Klimabelastningen er lav, uanset om der anvendes nyt træ eller genbrugstræ. Forskellen på 77% mellem bærende trægulv fra genbrug hhv. ny produktion skal derfor ses ud fra et i forvejen lavt niveau af klimabelastning.

Afgørende for resultatet bliver de processer, der er nødvendige for at fremstille produktet, i dette tilfælde transporten af materialer.

Da gulvbrædderne bevares deres form, er der tale om genbrug. Materialeværdien bevarer ligeledes på det højest mulige niveau, da brædderne kan opfylde den samme funktion.

Klimabelastning

77% CO₂-besparelse

Modenhed

Optagning og omplacering af gulvbrædder er forholdsvis ukompliceret. Processen anvendes dog normalt ikke i større skala i professionelt byggeri. Selve proceduren er en del af almindeligt snedkerhåndværk, men benyttes i dag kun til reparationer eller i bevaringssammenhæng.

Kredsløbspotentiale

Gulvbrædder kan have meget forskellig levetid og tilsvarende forskellig restlevetid i forbindelse med genbrug. I denne løsning regnes genbrugsgulvet nyttiggjort til energiproduktion efter endt levetid, da nye gulve kun forventes at kunne genbruges én gang, inden det er nedslidt.
Gipsplader med andel af nedknuste gipsplader

Gipplader fremstilles både af jomfruelig gips, af kraftværkers affaldsprodukter og i nyere tid også af gipssaffald.

Gipplader knuses, sigtes og kontrolleres i oparbejdingsanlæg, og gipsulveret kører til gipsfabrikken. Resten af gipssaffaldet, som ikke kan bruges i gipplader, genanvendes i andre industrier, som fx landbrug.

Klimabelastning

Der opnås en besparelse på 5% ved genanvendelse af 25% gipssaffald i produktionen af nye gipplader sammenlignet med plader fra udelukkende jomfruelig gips. Der er taget højde for en længere transportafstand ved genanvendelse af gips.

Modenhed

I den almindelige gipspadleproduktion indgår der en varierende andel af genanvendt gips. Da gipspadleproducerer ikke oplyser genanvendelsesprocenter i deres markedsføring, vil andelen af genbrugsgips oftest være ukendt.

Cirkularitet

Gipplader nedknuses og kan dermed genanvendes i nye gipplader. I øjeblikket bruges der omtrent 25% genanvendt gips i nye plader, mens den tekniske begrænsning ligger på cirka 40%. Her regnes der også renere gipssaffald ind som fx afskær og produktionsaffald ud over plader, der stammer fra bygninger.

Direkte genbrug af gipplader er vanskeligt, da der ofte er spartlet over pladerne samlinger.

Kredsløbspotentiale

Gips kan genanvendes ubegrænset, hvis det kan sorteret uden forurening. I et knusningsanlæg forarbejdes pladerne til gipspulver, som i princippet kan indgå i produktion af nye plader. I praksis kan renheden af indsamlet gipsaffald være utilstrækkeligt til brug i plader.

Producents eget produktionsspild er bedre egnet til nye plader, da restprodukter har en kendt renhed.
Eksempler på materialer

Kassevinduer af genbrugte termoruder

Ved udskiftning af ruder eller vinduer eller ved nedrivninger kan der være eksisterende intakte termoruder med længere restlevetid. Disse ruder vil som regel have en dårligere isolans end nye ruder og vil heller ikke opfylde bygningsreglementets energikrav, hvis de genmonteres i et andet vindueshul.

Det betyder dog ikke, at ruderne har mistet deres værdi. Ruderne kan fx genbruges i vinduer, hvor der ikke gælder de strengeste komponentkrav.

Alternativt kan ruderne indgå i nye, specialfremstillede kassevinduer med plads til to 2-lags termoruder, som normalt ville være nødvendige for at overholde bygningsreglementets komponentkrav.

Rudernes størrelse er givet på forhånd og afgør anvendelsesmuligheder. Mindre ruder kan dog kombineres som fag i større vindueselementer.

Klimabelastning

Ved direkte genbrug af ruder i nye kassevinduer opnås en besparelse på 97% sammenlignet med nye 2-lags ruder.

Reduktionen opnås ved at undgå den energitunge glasproduktion.

I begge scenarier er der antaget en glastykkelse på 2x4mm.

Cirkularitet

Selv ruderne genbruges direkte og ligger derfor øverst i affaldshierarkiet. Ruderne skal ikke gennemgå større processer end kontrol og rensning. Ramme og karm er fremstillet af nyt træ.

Kredsløbspotentiale

Det forventes, at genbrugte ruder højt kan indgå i en enkel genbrugscyklus, da tætningen har en begrænset holdbarhed.

Efter endt levetid forventes glasset med at indgå i den almindelige affaldsproces for vinduesglas.

Modenhed

Genbrug af termoruder er afprøvet i enkelte tilfælde, men regnes ikke som en moden løsning. Rudernes restlevetid er med til at bestemme, hvor fordelagtig løsningen er. Der findes ikke en testmetode til at vurdere den forventede restlevetid, men muligvis kan øvrige ruder af samme type i bygningen indikere, om det specifikke produkt i den konkrete kontekst kan forventes at holde tilstrækkelig længe.
Da træ optager CO₂ under væksten, antages klimabelastningen at være negativ for produktion af de fleste træbyggevarer. Klimabelastningen er lav, uanset om der anvendes nyt træ eller genbrugstræ. Forskellen på 77% mellem lamelfacader af træ og den cirkulære løsning med genbrugsvinduer skal derfor ses ud fra et i forvejen lavt niveau af klimabelastning.

Da træ optager CO₂ under væksten, antages klimabelastningen at være negativ for produktion af de fleste træbyggevarer. Klimabelastningen er lav, uanset om der anvendes nyt træ eller genbrugstræ. Forskellen på 77% mellem lamelfacader af træ og den cirkulære løsning med genbrugsvinduer skal derfor ses ud fra et i forvejen lavt niveau af klimabelastning.

Afgørende for resultatet bliver de processer, der er nødvendige for at fremstille produktet, i dette tilfælde transporten af materialer.

At anvende vinduesprofiler i lamelfacade har kendetegn af både genbrug og genanvendelse. Ved opskæring mister rammen sin funktion i form af brug i vinduer.

Udover få praktiske forsøg er det ikke almindeligt at genbruge karm- og rammetræ til nye formål. En teknisk ulempe er de relativt korte længder på profilerne grundet vinduernes størrelse, som resulterer i mange stød i facaden.

Træprofilerne kan hverken bruges til nye vindueskarme eller lamelfacader, da træet anseres for at være slidt efter to livscyklusser. Derfor anseres det, at det overfladebehandlende træ bliver nyttiggjort til energiproduktion efter endt levetid.

Kredsløbspotentiale

Klimabelastning

Modenhed

Cirkularitet

Eksempler på materialer

Facadebeklædning af glaskeramik

Klimabelastning

Ved genanvendelse af genbrugsglas til glaskeramik opnås ingen besparelse, da produktionen af glaskeramik er meget energikrævende, sammenlignet med jomfrueligt glas.

Ved sammenligning med en tung facadebeklædning med nye mursten ville der dog være en besparelse på 8%.

Cirkularitet

Der er tale om genanvendelse af genbrugsglas, som bringes i ny form gennem knusning og en termisk proces. Selvom der spares på udgangsmaterialerne, kræver sinterprocessen en stor mængde energi.

Kredsløbspotentiale

Glaskeramik udgør et trin i glaskaskaden, som har en værdi, der ligger mellem rudeglas og glasuld. Det betyder, at ruder kan downcycles til glaskeramik, som efterfølgende kan bliver til glasuld, og som slutteligt skal deponeres.

Modenhed

Teknologien er et nicheprodukt, men har været på markedet i en længere årrække. Det kendes særligt fra anvendelse i større projekter med særlige arkitektoniske krav til facaden.

46% øget CO₂-udslip
Genbrugstagsten

Klimabelastning

Genbrug af tagsten reducerer den potentielle klimabelastning med 96% sammenlignet med nye tagsten. Påvirkningen reduceres i det cirkulære scenarie, fordi den energitunge bræn- deproces fra produktion af nye tagsten undgås.

Omlægning af tagsten er en almindelig procedure, fx ved efterisolering af taget, hvis tagbelægningen ikke behøver at skiftes ud. Flytning af tagsten fra den ene til den anden bygning praktiseres dog normalt ikke i stor skala.

Cirkularitet

At flytte tagsten fra tag til tag hører under genbrug, da tagstenens udformning bibeholdes.

Det er teknisk muligt at lægge tagsten om flere gange uden større spild. I dette scenarie antages dog at tagstens levetid som tagbelægning skutter efter én genbrugsfase, da levetiden er forkortet i forvejen. Til sidst bliver tagstene knust og genanvendt som bærelag i vej.

Kredsløbspotentiale
Eksempler på materialer

Genbrugsmurelementer

Ydervægge fra 1960 og frem er ofte muret med cementmørtel, som er svært at fjerne uden at ødelægge stene. Selvom disse mure stadig kan have en lang holdbarhed, er det ikke praktisk muligt at genbruge stene enkeltvis. Her kan muren skæres i elementer og armeres med betonbagside. Elementet kan monteres som forplade i en facadeløsning.

Genbrug af murelementer reducerer den potentielle klimabelastning med 61% sammenlignet med opmuring med nye mursten. Påvirkningen reduceres, fordi den energikrævende produktion af nye mursten, som frigiver drivhusgas, undgås. Der er antaget et spild på 10% i produktionen af murelementerne, dog uden at der foreligger erfaringstal.

Udskårne murværkselementer er en eksperimentel tilgang, som kan inspirere til nye måder at anskue gammelt murværk på, da holdbarheden af de enkelte sten er den samme som for genbrugsmursten. I elementløsninger kommer dog flere variable til, såsom nedtagningsprocessen, armering med betonbagside, fastgørelse i facade og samling mellem elementer.

Ydervægge fra 1960 og frem er ofte muret med cementmørtel, som er svært at fjerne uden at ødelægge stene. Selvom disse mure stadig kan have en lang holdbarhed, er det ikke praktisk muligt at genbruge stene enkeltvis. Her kan muren skæres i elementer og armeres med betonbagside. Elementet kan monteres som forplade i en facadeløsning.

Genbrug af murelementer reducerer den potentielle klimabelastning med 61% sammenlignet med opmuring med nye mursten. Påvirkningen reduceres, fordi den energikrævende produktion af nye mursten, som frigiver drivhusgas, undgås. Der er antaget et spild på 10% i produktionen af murelementerne, dog uden at der foreligger erfaringstal.

Udskårne murværkselementer er en eksperimentel tilgang, som kan inspirere til nye måder at anskue gammelt murværk på, da holdbarheden af de enkelte sten er den samme som for genbrugsmursten. I elementløsninger kommer dog flere variable til, såsom nedtagningsprocessen, armering med betonbagside, fastgørelse i facade og samling mellem elementer.

Cirkularitet

Genanvendelse af ventilationsrør facaden giver en besparelse på 56% i forhold til konventionelle facadeplader af galvaniseret stål. Besparelsen opnås hovedsageligt, fordi produktion af ny stål undgås ved genanvendelsen.

Det antages, at udgangsmaterialet, ventilationsrør, ikke var udsat for vejret i deres første cyklus. Facadepladerne har derfor en levetid på linje med regulære facadeplader af galvaniseret stål.

Denne løsning må regnes som eksperimentel. Processer som presning af spirorør til plader og montering som facadebeklædning er dog forholdsvis ukomplicerede. Da opbygningen af det endelige produkt er ikke langt fra konventionelle stålbeklædninger, kan løsningen sagtens udvikles som reelt alternativ.

Genanvendelse af ventilationsrør facaden giver en besparelse på 56% i forhold til konventionelle facadeplader af galvaniseret stål. Besparelsen opnås hovedsageligt, fordi produktion af ny stål undgås ved genanvendelsen.

Det antages, at udgangsmaterialet, ventilationsrør, ikke var udsat for vejret i deres første cyklus. Facadepladerne har derfor en levetid på linje med regulære facadeplader af galvaniseret stål.

Denne løsning må regnes som eksperimentel. Processer som presning af spirorør til plader og montering som facadebeklædning er dog forholdsvis ukomplicerede. Da opbygningen af det endelige produkt er ikke langt fra konventionelle stålbeklædninger, kan løsningen sagtens udvikles som reelt alternativ.

Genanvendelse af ventilationsrør facaden giver en besparelse på 56% i forhold til konventionelle facadeplader af galvaniseret stål. Besparelsen opnås hovedsageligt, fordi produktion af ny stål undgås ved genanvendelsen.

Det antages, at udgangsmaterialet, ventilationsrør, ikke var udsat for vejret i deres første cyklus. Facadepladerne har derfor en levetid på linje med regulære facadeplader af galvaniseret stål.

Denne løsning må regnes som eksperimentel. Processer som presning af spirorør til plader og montering som facadebeklædning er dog forholdsvis ukomplicerede. Da opbygningen af det endelige produkt er ikke langt fra konventionelle stålbeklædninger, kan løsningen sagtens udvikles som reelt alternativ.
Eksempler på materialer

Genbrugte aluminiumsplader som beklædning af facade eller tag

Klimabelastning

Genbrug af aluminiumsplader i nye bygninger reducerer klimabelastningen med 81% sammenlignet med det typiske scenarie, hvor aluminiumsplader omsmoltes og genanvendes til produktionen af nye plader. Det er antaget, at 90% af udgangsmaterialet kan genbruges, da der vil være et vist spild, når pladerne skal tilpasses til den nye bygning.

Modenhed

Der kræves ikke ny teknologi ved denne løsning, da den omfatter de samme processer som udskiftning af beskadersgede plader. Grundrensning af nedtagne plader er den eneste proces, som ikke udføres i forvejen.

Cirkularitet

Der er tale om direkte genbrug, da panelerne bruges uden større ændringer. Værdien af materialet og funktionaliteten som klimaskærm bevares ligeledes.

Kredsløbspotentiale

Pladerne kan teknisk set nedtages og genbruges igen. I dette eksempel antages det dog, at aluminiumspladerne efter endt levetid er slidte og bliver omsmoltes til produktion af ny aluminium.
Genbrugte indvendige døre

Ved genbrug af døre kan der opnås en besparelse på 80% af klimabelastningen i forhold til produktion af nye døre. Klimabelastningen fra træ er tæt på CO₂-neutral for både genbrugsdør og ny dør. Den primære forskel skyldes derfor, at metalbeslagene kan genbruges, og at de kan betragtes som uden belastning i genbrugsprocessen.

Klimabelastning

Modenhed

Afmontering og genmontering er standardprocedurer for snedkeren. Der eksisterer allerede et lille marked for genbrugsdøre med karm, dog mest til privat brug. Der kendes ikke til projekter med genbrugsdøre i større skala.

Kredsløbspotentiale

Dørene kan i teorien nedtages og genbruges igen. I dette eksempel antages det dog, at dørene efter endt levetid er nedslidte og sendes til nyttiggørelse og energiproduktion.

Døre består af dørblad og karm. Mens dørblade per definition er demonterbare, er afmontering og genmontering af karme af træ mere besværlig.

Cirkularitet

Da det meste af døren anvendes i uændret tilstand, er der tale om direkte genbrug.
Eksempler på materialer

Tagpap med andel af genanvendt tagpap

Klimabelastning

Genanvendelse af 10% tagpap i produktionen af nyt tagpap har en 50% lavere klimabelastning end tagpap uden genanvendt materiale.

Forskellen mellem de to scenarier skyldes kun i mindre omfang en lavere klimabelastning i produktionen. Den største andel af besparelsen genereres ved slutningen af produktets livscyklus.

Her har jomfruelig tagpap en stor klimabelastning ved forbrænding, hvorimod tagpap med genanvendt materiale antages hovedparten genanvendt. Besparelsen ligger altså primært i den undgåede forbrænding når produktet nedrives.

Besparelsen er angivet for tagpap som toplag. Ved tagpap som underlag kan der ingår en større andel tagpapaffald (15%) og besparelsen bliver tilsvarende større (69%).

Modenhed

Genanvendelse af bitumenaffald i produktion af tagpap er en etableret teknologi, men er ikke almindelig for alle producenter og produkter.

Bygherrer kan efterspørge produkter med en given genanvendelsesprocent af gammelt tagpap.

Kredsløbspotentiale

Bitumen kan genanvendes i flere cyklusser på samme måde, som det allerede praktiseres for asfalt til vejebeplægning. Derfor antages det i beregningen, at bitumen genanvendes på samme måde ved produktion som ved endt levetid.
Inspirationsliste

I dette kapitel findes der en inspirationsliste over bøger, rapporter, online-matchningsportaler, hjemmesider og links, som giver indblik i cirkulær økonomi og kan bruges, når der arbejdes med salg og køb af brugte byggematerialer.

Bøger og publikationer

Lendager. (u.d.). Lendager Up, We cannot predict the future – but we can invent it! Lendager.com. Pixiekatalog

Online-Matchningsportaler

Genbyg, https://genbyg.dk/
- En portal som kan hjælpe nedbrydningsfirmaer med at komme af med materialer og kan hjælpe virksomheder til at finde genbrugsmaterialer

Loop Rocks, https://www.looprocks.dk/
- En app som giver et overblik over alt grus, sand, jord og andre fyldmaterialer der er i dit område
Salg af genbrugsbyggematerialer
Bango, https://www.bango.dk/
- Forhandler af vinduer og døre, genbrug, restpartier og overskudsværker.

Brugte mursten, http://www.brugtemursten.dk/

Byggematerialer, https://www.byggematerialer.dk/
- Find produkter og materialer til dit næste byggeprojekt

2ndHandTegl, http://2ndtegl.dk/

Gamle mursten, http://gamlemursten.dk/

HC genbrug, http://www.hc-genbyg.dk/
- Salg af genbrugsmaterialer

JK- Genbrugscenter, https://jk-genbrugscenter.dk/
- Salg af genbrugsmateriel til erhverv og privat i hele Danmark Jensen genbrug

Jensen Genbrug, https://jensengenbrug.dk/
- Salg af genbrugsmateriale i hele Danmark

Klassiske vinduer, https://klassiske-vinduer.dk/

Tegllageret, http://tegllageret.dk/
- Genbrugs tagsten, mursten og naturskifer

Viden og information om CØ i byggeri
Byggefakta - https://www.byggefakta.dk/
- Byggefakta A/S har leveret projektinformation til byggeriets aktører siden 1986 og er i dag markedets absolut førende leverandør af information om byggeprojekter. I 2014 blev vi en del af DOCU Nordic, som er markedsledende informationsleverandør i resten af Norden

Byggeinformation, http://www.byggeinformation.dk/
- Her findes information om hvem der bygger, hvad der skal bygges, hvor og hvornår

Circularity City, http://www.circularitycity.dk/rapporter/
- Adgang til rapporter, casestudier og analyser som beskriver konceptet for cirkulær økonomi

Cirkulær virksomhed, https://cirkvirk.dk/
- Hjemmesiden er drevet af rådgivningsfirmaet Viegand Maagøe og fungerer som vidensdelingsplatform for Cirkulær Økonomi med case-katalog, CØ-blogs, værktøjer, gode råd og guides
- Adgang til rapporter, casestudier og analyser som beskriver konceptet for cirkulær økonomi

Godtgjort, http://www.godtgjort.dk/
- Et godt eksempel fra Nordjylland, hvor der skabes nye produkter af brugte materialer:

HFB Molio Produktdata, https://www.hfb.dk

Matche, http://www.matche.dk
- Hjemmesiden er drevet af DTU og fungerer som et screeningsværktøj for virksomheder, der hjælper
 virksomheder til at vurdere deres eget omstillingspotentiale for C.Ø, omstillingsruter og formidling og
 deling af viden ang. C.Ø.

- Materialeatlas over byggematerialers genbrugs- og genanvendelsespotentiale.

MG:LAB, https://gi.dk/Publikationer/Miljøskadelige%20byggematerialer%20e-bog.pdf
- er en e-bog der giver let tilgængelig viden om genbrug, genanvendelse, nyttiggørelse, matchning,
 affaldshierarkiet, miljøskadelige stoffer mv.

Opbygning af Danmark – Gennem nedrivning af tomme bygninger (2018)
- https://lendager.com/strategi/opbygning-af-danmark-gennem-nedrivning-af-tomme-
 bygninger/#kontekst

Produkter til Bæredygtigt byggeri, https://p-bb.dk

Videncenter for Cirkulær Økonomi i Byggeriet, https://vcob.dk/genanvendelse/cirkulaer-oekonomi/
- VCØB samler, udvikler og formidler uvildig og konkret viden om cirkulær økonomi i byggebranchen.
 Hos VCØB kan du som bygningsejer, entreprenør, håndværker, rådgiver, arkitekt, producent eller
 kommune få gratis vejledning om cirkulær økonomi i byggeriet - herunder om håndtering i bygge- og
 anlægsaffald, miljøfarlige stoffer mulighederne for genbrug og genanvendelse.

- En internationalt anerkendt produktstandard inden for bæredygtighed. Cradle to Cradle standarden
 bygger på Cradle to Cradle designkonceptet, der er udviklet af den amerikanske arkitekt William
 McDonough og den tyske kemiker Dr. Michael Braungart